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ATTENUATION AND SOURCE PRESSURE PROFILES
by K. J. Baumeister
NASA Loewis Research Center
Cleveland, Ohio 44135
ABSTRACT

A numerical method is developed that could predict the pressure distribution
of a ducted source from far-field pressure inputs. Using an initial value formu-
lation, the two-dimensional homogeneous Helmholtz wave equation (no steady
flow) is solved using explicit marching techniques. The Von Neumann method
is used to develop relationships which describe how sound frequency and grid
spacing effect numerical stability. At the present time, stability considerations
limit the approach to high frequency sound. Sample calculations for both hard
and soft wall ducts compare favorably to known boundary value solutions. In
addition, assuming that reflections in the duct are small, this initial value ap-
proach is successfully used to determine the attenuition of a straight soft wall
duct. Compared to conventional finite difference cr finite element boundary
value approaches, the numerical marching technique is orders of magnitude
shorter in computation time and required computer storage and can be easily
employed in problems involving high frequency sound.

INTRODUCTION

A detailed knowledge of a fan noise source is required in the dusign of
turbojet engine acoustic suppressors, since the energy attenuation of the sup-
pressor is strongly dependent on the radial and circumferential pressure dis-
tribution of the noise source (ref. 1). Recent experimental and analytical
research (refs. 2 to 5) has focused on determining the radial and circumfer-
ential variations in acoustic pressure for typical turbofan sources from both
internal and far-field pressure measurcments.

The direct calculation of the internal structure of a ducted noise source

from far-field pressure measurements is essentially an initial value problem.
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Qﬁ If pressure and impedance are known at the boundary of the system (far-field),

‘; the pressure can be uniquely determined in the vicinity of the inlet as well as ' .
’3 inside the inlet ducting which may contain acoustic energy absorbers in the

.j wall. As an alternate to the statistical approach of Ref. 5, a relatively simple :
; numerical marching method is developed by which this information, if available

:i in the far-ficld, could be translated directly into a description of a ducted noise
133 source.
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In the absence of mean flow. explicit initial value numerical marching

techniques are developed to obtuin a solution to the homogeneous Helmholtz

equation for a two-dimensional cartesian coordinate system. The technique uses

:
:

the finite difference representation of the Helmholtz equation. Explicit marching !

schemes are emphasized since they reduce the solution of the Helmholtz equation

T

to a simple algebraic algorithm which requires a minimum of computer storage

and running time. Scveral sample calculations are also presented to illustrate

how a source could be predicted from duct far-field conditions.
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In addition, assuming that reflections in the duct are negligible, the technique
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is used to determine the attenuation of a straight two-dimensional soft wall duct

% by prescribing a pressure distribution and the acoustic impedarice of the medium éﬁ
ifz (p’(")c’:)) as the initial conditions at the source (sce Symbols for all symbol meanings). .
v}é The truncation error and stability of these various marching schemes are Py
'3 studied. In rarticular, the Von Neumann method is used to develop relationships ;
: which describe how sound frequency, transverse grid spacing and marching step li;
) size affecct numericul stability. ’\“'
: SYMBOLS

IFouricr coeflicient, kg, Bl
quadratic constant, Eq. 26
difference coefficient ’

Fourier cocfficient, Eq. 18

difference coefficient

quadratic constant, Eq, 27




difference cocfficient

speed of sound

éarameter, Eq. 28

difference coefficient

sound attenuation

acoustic power

difference coefficient

frequency

channel height

acoustic- intensity in axial direction

Y-1

total number of grid points in y direction
total number of grid points in x direction
length of duct

spinning mode number

constant

transverse mode number

dimensionless Fourier coefficient of pressure p(x,y), pP“/p’:z\
amplitude of pressure fluctuation or p’(“)c’(“)2
pressure defined by Eq. 51

pressure amplitude, Eq. 10

averaged ipl, Eq. 11

discrete pressure at kij grid point

radial coordinate

dimensionless acoustic particle velocity in x direction u*pzw*H*/ p*A

dimensionless acoustic particle velocity in y direction v*pgw*H*/ ﬁf‘

weighting factor
dimensionless axial coordinate, x*/H*

axial coordinate
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y dimensionless transverse coordinate, y*/H*

y* transverse coordinate

Ay transversce grid spacing ¢
3 acoustic impedance

€ error in pressure

L specific acoustic impedance
7 dimensionless frequency. fH*/c¢* or w*H*/ch’(‘:‘)
0 parameter, Eq. 29

AX wavelength

p’(") density

7y axial error variation parameter
] angular coordinate

w* civcular frequency
Subscripts

e cxit condition

k axial index, see Fig, 1

j transverse index, see Iig. 1
m cell index

n harmonic component

o] cntrance, x=10

w wall

Superscripts

* dimensional quantity

() complex conjugaic
(1) real part
2) imaginary part
NUMERICAL APPROACH
Boundary Value Froblem
The calculation of the propagation of sound in ducts using numerical finite

difference and finite clement techniques has been described in Refs. 6 to 12.

Figure 1 shows a typical finite-difference grid network used in Ref. 6 to study
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the propagation of sound in a two-dimensional duct. In this case, the derivatives

in the propagation equations are expressed in tefms of the values of pressure at
each grid point. For the boundari/ conditions, an entrance pressure profile, wall
impedance, and an exit impedance are required. The collection of the various
difference equations at each grid point form a set of simultaneous equations which
are solved to determine the pressure at each grid point. A similar procedure
is used in the finite element theory, In general, the finite element technique is
more convenient to use for complex geometries (ref. 9), although it requires
larger solution times than the finite difference techniques.

The grid system does not have to be confined to the region inside the duct,
as shown in Fig. 1, but it may also be extended to regions external to the duct,
as depicted in Fig. 2(1). Grid points may be extended into the far-field by a
direct placement of grid nodes or elements in the far-field, such as used in
Ref. 12 for a flanged horn or by some type of mapping function (Ref. 7).

However, the boundary value approach presents some severe difficulties.
Generally, numerical solutions to the boundary value acoustic problems are
limited to relatively low frequency sound and relatively short ducts, because at
least 12 axial grid points or elements are required per wavelength of sound in
order to accurately estimate the acoustic intensity (Ref, 6). A wave envelope
analysis was developed in Refs. 8 and 10 to overcome this difficulty; however,
the technique has only been applied to the simple cases of no flow and plug flow.

Initial Value Problem

In an initial value problem both the pressure and impedance either in the
far-field or at the noise source are known, This is illustrated in Figs. 2(b) and (c).
Using a1 marching technique, the pressure at the points adjacent to the boundary
can be immediately calculated. The matrix algebra and computer storage as-
sociated with the boundary value problem is unnecessary for the initial value
problem. Since no matrix of coefficients has to be stored and manipulated as

in the boundary value problem, marching techniques are not limited to low

frequency problems. However, associated with marching techniques is the prob-
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lem of numerical stability, that is, preventing the growth of the round-off errors. !:
Next, the governing cquation will be presented along with the formulation of . gﬂ
the initial value approach, k
ANALYTIC MODEL - L
Governing Equations and Boundary Conditions IE*Z
For a two dimensional duct with no flow, assuming that the pressure is a L
simple harmonic function of time (eim‘) and that no sources exist in the medium, -
the linearized gas-dynamic equations (Ref. 13, p. 5) of continuity, momentum,
and energy reduce to the dimensionless Helmholtz equation “
%ig +%§§ remp=0 o 1

The acoustic velocities are given as (Ref. 10)

u=idP @)
ox

v=i9P 3)
ay

(The dimensional quantities used to normalize the above parameters are given in the
Symbols section,) In these coordinates, the following boundary conditions apply

at the upper wall

- y‘t\' L1 pr_-i2mp )
GRS S -
oy w

or

, -i2mp

dpl - T 7w (5)

ayIW gw
where - is the complex specific acoustic wall impedance. At the lower wall .

(y = 0) the signs arc changed. The starred quanties indicate dimensional terms
while the unstarred terms are dimensionless. Similarily (Ref. 10, Eq. 35) the *

axial impedance condition is

| +
W =198 =2m, (6)
¢ ox r. €
e e




The sound power that leaves a duct and reaches the far-field is related to
the instantancous axial intensity at the duct exit. The intensity can be expressed
in dimensionless form as

-1 -
I = Real(pu) (7)
X 2
where the bar denotes the complex conjugate. The total dimensionless acoustic
power is the integral of the intensity over the transverse dimension y

1
E .= Lxuvdy 8)
JO
By definition, the sound attcnuation (decrease in decibels of the acoustic power
from x= 0to x) can be written as
E_
AdB==1010g10‘—5‘ (9)
E,

The pressure amplitude |p| is a quantity to indicate how the acoustic pres-

sure varies in the duct. By definition

- 02 @2
Ipl = V5§='Vpu) +p® (10)
2
where p(l) and’ p(") are the recal and imaginary parts of p respectively. A

useful quantity in comparing the boundary value and marching solution is
1
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which gives a measure of the pressures across the entire transverse dimension
of the duct.
Finite Difference Formulation
Instead of a continuous analytical solution for pressure, marching solutions

determine the pressure at isolated grid points by means of finite- difference ap-
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proximations. The differcatial governing cquation, in this case kq. 1, will be
"
expressed as an algebraic equation in terms of the pressures at the grid points. 2oy
R
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In the initial value problem to be considered here, the pressures at the grid by
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points adjacent to the known boundary are found from the known pressure and

impedance at the boundarsy . .
The governing difference equation can be developed by an integration process

in which the Helmholtz Eq. 1 is integrated over the various cell are;s shown in .

Fig. 3

o%p L 02 2
[ 2P+ 2P+ 2m) p) dydy = 0 (12)
2, 2
\ OX ay

C efl
area

The finite-difference approximations for the various cells shown in Fig. 3 are

cxpressed in terms of the cocfficients

mPk-1,j " PmP j-1 ¥ CmPk,j * 9mPh, 41t CmPr,j T O a3

The subcrint m denotes the cell number. The expressions for the coefficients

for the various cells can be found in Table I. The derivation of cell 1 of Table 1

is presented in Appendix A of this paper. The derivation of the coefficients for the

{. other cells can be found in Ref. 10 (Appendix D) and will not be presented here.

i The explicit marching technique is based on the face that Pr-1 i is the only
unknown. Therefore, the pressure at (k-1,j) can be solved directly as

A

- :
pk—l,j o -5; {bmpk,j-l * (’mpk,j * dmpk,j+1 * empk+l,j) (14)

The above equation can be uscd in marching backward from the end of the duct
as shown in Fig. 3(a). On the other hand, if we start from x equal 0 at the
duct inlet and move towards the duct exit, then pk+1,j would become the unknown.
In this case. the marching could be started with ccll Eqs. 7, 8, and 9 of Fig. 3(b).
STABILITY CONSIDERATIONS
Stability Problem
Equation 14 was applicd to the problem of a hard wall duct with a plane
wave existing at the exit (L*/H* = 1) and an exit impedance equal to p’gc"(;(ge = 1).

A solution for Ip!x defined by Eq. 11 is displayed in Fig. 4 for a frequency
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parameter of = 1. The known analytical solution is glve;x in Ref. 8 for a plane
wave in a hard wall duct

p= cos 2mx - isin 2mx f | (15)

or subs‘ituting into Eqs. 10 and 11 yields
Iply,=1 (16)

As seen in Fig. 4, the numerical values of |p|x are in close agreement with
the analytical value until the axial position, x equalsg 0.4, is reached. Obviously,
an instability occurs as the solution is marched from the exit (x = 1. 0) to the en-
trance (x= 0). Clearly, the explicit marching equation as given by Eq. 14 is
unstable in this case. Consequently, a detailed analysis of the stability of the
Hembholtz equation is required, to determine when instabilities can occur and
how they can be avoided.

Von Neumann Method

To analyze the stability of the difference approximation to the Helmholtz
equation, we must study how the errors introduced into the computation propagate.
We may express the exact solution to the difference equation in the form

p(exact) = p(computed) + €(error) (17)

The error may be due to round-off or a computational mistake. The propagation
of errors through the computation is governed by the original difference equation.
Assuming the initial and boundary values for the error are zero, then the equa-
tion governing the propagation of errors is the homogeneous form of the defining
difference equation, Eq. 13.

For difference relations involving constant coefficients, the errors may be
expanded in a finite Fourier series of the form

inmy

‘k.1=> ;an Fme (18)
n

This expressicn for the error was first used by Von Neumann (Ref. 14 and 15).

The problem of stability is studied by noting the behavior of the coefficients
¢(n). If any @(n) is such that
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for any n, then the corresponding error harmonic would grow beyond limit during *
during marching.
Stability Analysis

The stability analysis will be performed for the two marching schem.;
shown in I'ig. 5. In these cases, the (k+1, j) values are considered the nknown,
in contrast to the earlier examples where we were moving from the exit to the
entrance of a duct. The explicit schemes shown in Fig. 5 allow the pressures
to be calculated from a simple algebraic equation of the form of Eq. 13.

To cover these two grid patterns, the stability analysis will be developed
for the grid network si.own in Fig. 5(). In this network, the difference approx-

imation for the Helmholtz wave equation (see Appendix A) becomes

2
_ Ax
Pra,i= 2 Pkj TP, T Wk O, gem 2Pk, TPk -1
Ay, J
2
Ax
= Wk ay P_1,j#1 ™ 2Pke1,j ¥ Pie, j-1)
2
- @mA . 20
(amax) Pkd (20)
where
Wt W, =1 21)

The weighting factors Wk and wk-l indicate the importance of a particular
grid approximation in the model. For example, if Wk-l equals zero, then
Eq. 20 would represent the Explicit x grid of Fig. 5(a).
Since the propagation errors are also governed by Eq. 20, Eq. 18 (for a
particular n) is substituted into Eq. 20 with ¢, . replacing Pi ;- Dividing
inny, +J
through the resulting equation by ape ¢+, regrouping terms with the iike

values of q)k and noting that

iny, iny, .
e -‘ﬂ/e 3:e1nAy (22)
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- iny. iny. .
. e 1"1//0 jo gindy
- and
= I e""rAy -2+ e-imrAy =-2(1 - cos nrdy, = -4 sinz-'-lléx
-4 2
ﬂ then the solvtion for ¢ obeys the quadratic form
- acpz- 20 +c=0 (25)
- where
'4: i -
- a=| 1 l (26)
- 11+0W,/2-d/2,
: k j
| 1-9W |
c= k-l 27)
\1 +owk/2- d/2,
.”.;‘ —_ \2
2 d = (2mAx; (28)
‘.;, 2
P 6=4 8% " gin? ATdy 29)
\Ay/ 2
The well known solution for ¢ is written as
o=ty /L_C (30)
> a a? a
. So that the errors will not grow, |¢| must have a value less than unity
(see Eq. 19). This requires that the coefficients a and c¢ obey the following
inequalities
¥ -1c¢< 1. 1 (31) ‘
’ \
and ORIGINAL PAGE 1
ALl
-1 +-2 <¢/ac 1OF POOR QU (32)
T jal
' However, it is convenient to use a more restricted form of Eq. 31
0« 1 <1
a
P ——— —
e - “.‘ el A ‘3---'--1 . \
REGE TS R o
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Egqs. 32 and 33 put stability restrictions on the maximum allowable size f‘ i;r
J
of axial spacing Ax: however, Ax must be restricted to even smaller values to . .
reducce truncation error. From Ref, 6, the required number of axial grid points 1 : A:'.‘:
. . - %
4 was b
Sl o
‘”";‘ K= Npg B/I* N=12 (34) ’ Ry
1‘;“‘% Thus, r ¥
/1% B ".“
. Ax = DH L (35) e
.3 K 1 i
Also, the transverse spacing Ay was given in Ref, 6 by W
Av o ] g
y = —— (36) P
J- 1. ] :‘;;“’7..
s
However, no requirement for the size of transverse spacing Ay was given in dL
Ref. 6 other than the number of transverse grid points be increased until con- N
vergence is achieved. S ’
Finally, whenever Egqs. 32 and 33 are conservatively applied. the sine \_ :
term in Eq. 29 is assumed to take on the maximum possible value , :
A
9 ..‘ .
gin? ATAY - ) 37) |
2 I
Now, Egs. 32 to 37 will be applied to the grid forms in Fig. 5. 3
¢
Explicit X-grid. - For the simplest explicit X-grid (Fig. 5(a)), the weighting
€ L
factor W, _, is zero and W, equals 1. Thus b
3 B L
= ]“1 38 A
a="1+(0/2)- (d/2) (38) {‘ -
‘ |
: and 1
¢/a=1 (39) 1)
. b
Applying the first coadition for stability, Eq. 33, yields d> 0 where v and d |

are defined by Egs. 28 and 29 respectively,

—
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Hence, QUALITY ::

| ¥

) 1 mAy. 3
Ay > = sin Y (40) o

wh 2 ;,

’ . '3
Finally using ¥q. 37 yiclds the following requirement for numerical stability of LA

the 5 point X-grid shown in Fig. 5(a) ;,

i3

Ay >9_:}g. Ay* >.9'_:}.2_= 0,32 A* (41) ':J{.

n B/t 3

. 0 I3y

Along with Eq. 41, the second condition for stability, Ey 32, mos. also hold,

but the right hand side of Eq. 32 can nct be satisfied since ¢/a in Eq. 39 is
identical to 1. In this case, the solution for ¢ occurs as complex pairs of

magnitude cqual to unity

¢ "1, if Ay> 0. 42 and Ax < L (42)

) 12n

Such a case is defined (Ref. 14, p. 337) as having a linear instabiiity.
At first glance, these results, Egs. 41 and 42, are disappointing. Consider
Eq. 41. With numerical techniques i. .. desirable to have Ax and Ay related
f"’

so that both Ax and Ay can both be decreased to zero to check convergence.

However, in this special casc of the I'elmholtz equation, this limitation on Ay

AR
R a5
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RN AP .
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has an important physical interpretation. Also, Egq. 42 hos the exact property

S5

(¢ = 1) required for acoustic calculations. Both Eas, 41 and 42 will now be R

TV g GRS
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considered, beginning first with Eq. 42,

{
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The Fourier components for propagating transverse acoustic modes should

travel with undiminished amplitudes in hard wall ducts (sce Eq. Bl - Appendix B

. or Ref. 16). Since ¢ could represent the x dependence of a pressure wave f\
just as well as an crror, ¢ must be held at one in the numerical calculation, oA
. Thus, Eq. 42 has exuactly the properties desired in modeling acoustic propagation *

down a hard wall duct for propagating transverse modes. That is, the amplitude

§ o~
- of the waves in the x dircction is constant (¢ - 1), Other nodal systems could o
::p be used in this problem besides the two shown in Fig., 5. However, if ¢ should
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be significantly different from one, this method would lead to incorrect answers.
Unfortunately, if ¢ equals one, crrors are also not diminished in magnitude .

either. Errors at successive steps may accumulate and because of linear in-

stability the amount of round-off error may ultimately become the dominant factor

in the calculation if many grid points arc used (Ref. 15).

Explicit H-grid. - To prevent the accumulation of errors, the 7 point or ex-

plicit H-grid will be ecmployed, as shown in IFig. 5(b). In this case, the weighting

factor Wk-l is kept at a small value (10'6) so thzt ¢ will be slightly less than
i’ one so, that errors do not grow. However, because Wk_1 is such a small value,

¢ can be considered equal to one for practical purposes. Consequently, the

decrease in amplitude of the desired propagating transverse mode will be negligible.
To first order, the stability criteria for Ax and Ay are the same as for

the 5~point or explicit X~grid shown in Fig. 5(a). The explicit X-grid will, how-

ever, still be used to start the marching solution. In such a case, the error as-

sociated with a single step would be negligible.

Now, let us " eturn to Eq. 41 for a physical interpretation of its meaning.

Assume that the argument of the sine term in Eq. 40 is small such that

sin T02Y . mnly (43)
2 2 —_

Substituting Eq. 43 into Eq. 40 yields —

n<2n (44) -

Eq. 44 represents the cutoff condition for a mode {c propagate unattenuated down

a hard wall rectangular duct (see Eq. B2, Appendix B). Therefore, Eqs. 41 and 42

can be interpreted to mean that only propagating modes can be handled in the

calculation., .
Using Eq. 36 with Eq. 41, the increment Ay can be expressed in terms of ‘

the number of grid points J in the y direction as

Jamp+l (45)

For a given harmonic to exist in the solution, there must be sufficient grid points
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to resolve a FFourier component, To define a wave, at lcast 2 points are re-

. quired. Therefore
nzd 46)
. 2
- or substituting Eq. 46 into Eq. 45 yields
nc< 111-+—1 (47)

2

- which is roughly cquivalent to Eq. 44 for small values of 1. Thus, the stability
criteria indicate that marching could be unstable if sufficient grid points are
available to resolve the higher order transverse modes.

As will be shown later, the restriction of handling only propagating modes
will limit the useful application of this technique to high frequency (high 7)
calculations and to those problems where the cut-off modes do not play an
A important part in matching pressure or other boundary conditions.

DIFFERENCE ALGORITHM

The marching equation for calculating pressure down the duct for the central

cell can now be written from Eq. 20 as

¥
MY
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For the upper wall cell, soft wall boundary conditions require that
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The e uation at the lower wall requires thatj - 1in Eq, 49 becomes j +1. For
Wk_1 equal to 10'6, the equations represent the explicit H-grid system. For .
Wk_ 1 equal zero and Wk equal unity, the equations represent the explicit X-grid.
DUCT MARCHING EXAMPLES
To illustrate the capabilities and limitations of the marching technique,

sample problems will be presented for the simplest case of a two-dimensional

duct as shown in Fig. 6, instead of the more complicated geomtry shown in Fig. 2.
The advantage of this simplification is that a direct comparison of numerical and
analytical techniques can be made. A boundary value solution for Fig. 6(a) can
be used to set up the exact exit conditions for the problems in Figs. 6(b) and (c).
As a result, the numerical accuracy of the marching technique can be conveniently
checked for the case of soft wall ducts.
Hard Wall Ducts

In the example shown in Fig. 7, the stability condition for a hard wall duct
is evaluated for decreasing values of Ay (increasing J) for various modal inputs
at a dimensionless frequency 7 equals 3. As seen in Fig. 7, for the first mode

(n = 0), the calculations are convergent to the analytical solution for J considerably

larger than the value of 10 predicted by Eq. 45. It is likely that the round off
error is Quite small for a plane wave and the calculation is terminated before the
error can grow to a significant value. On the other hand, the higher order trans-
verse modes (n > 0) follow the stability criteria quite closely.

As an additional check shown in Fig. 8, the number of grid points in the

x direction was increased to test for stability. As theory predicted, the results ! 7;

remain converged.

Soft Wall Duct . \ ‘
Next, the marching techniquc is applied to a soft wall duct. From Ref. 10, ,'
the boundary value finite difference solution for a plane wave input was used to .
establish the exit conditions. The results arc shown in Fig. 9. As can be seen m
¥

in Fig. 9, the explicit H~grid marching technique and the boundary value technique
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arc in exact agreemeni.  Again there was no error growth when the number of
axial grid points was increased.
PFhase Relationship

A marching theory was devised so that the acoustic pressure distribution
at a source might be deduced from far-field measurements. In actual practice,
Refs. 17 and 18 for example, sound pressure level measurements are recoided
at a set of microphone stations in the far-field without regard to the phase
xclatxonshlp between the various microphone measurements. In the next example,
the gensitivity of the duct attenuation and source profiles to a change in phase at
the duct exit is considered.

For the same problem considered in Fig. 9, again the finite difference solu-
tion from Ref. 10 was used to establish the exit condition. The solid line shown
in Figs 10 and 11 indicates results based on the correct phase relationship as
computed from the boundary value analysis. On the other hand, the dotted line
in Figs. 10 and 11 presents a calculation with an exit pressure of the same
absolute pressure magnitude (SPL) but of different phase. In this case, the
imaginary part of the acoustic pressure p(2) was assumed to be zero. As secen
in Fig. 10, the improper phase relationship leads to much higher attenuations.
IFig. 11 shows a pronounced effect of the exit phasc on the calculated source
pressure profile. Ohviously a considerably different pressure profile from
that of a plane wave has been generated at the liner entrance. Clearly, if one
wishes to estublish the structure of the noise source from far-field measurements,
the far-ficld measurement must include a reference microphone to establish
the phase.

FAR-VFIELD APPLICATION

As mentioned in the introduction, the impetus te develop the marching tech
technique came from a desire to establish the noise source from far-ficeld data.
The purpose of this scction is to discuss the possible application of this techni-
que in obtaining information on the spinning mode content of a turbofan engine.

In analyzing far-field data from a typical turbofan engine, cylindrical and
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spherical type coordinate systems should be used to resolve the fan's radial,
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circumferential (inside duct) and axial pressure. In such a case, a three .
dimensional differential wave equation of the form (inside duct)

L{p(r,3,%}=0 (50) '

is required. The differential operator L should, of course, be sufficiently
general to account for variable mean flow Mach numbers and variable inlet
geometry. The operator could be cylindrical coordinates inside the duct and
spherical coordinates outside the duct. The coordinate system would be
coupled at the duct exit using some type of matching (see Ref. 19).

Inside the duct, the circumferential variable i could be separated by

assuming a pressure distribution of the form
im ¥y

p(r, ¥, %) = p (r,x)e ° (51)
where m is the "'spinning" mode number. Therefore, the equation describing

the pressure field reduces to a simplier two-dimensional form,
L{pm(r,x)) =0 (52)

Now, let us consider the possible application of Eq. 52 to a numerical solution
for the noise source based on far-field data.

To estimate the modal content of a fan source using the marching technique,
a matrix of grid points would be placed in the acoustic field leading from the
microphones to the fan source. Assume that the microphones are spaced about
a fan inlet at some fixed height above the ground under free field conditions.
Furthermore, assume the microphonecs are set to measure both magnitude and
phasc of the pressure. As was shown in the last example of the previous section,
phase information is necessary to account for cancellation of the various modes i v

in the duct and the far-field.

Unfortunately, a unique solution exists at the fan source for any assumed I f

mode number m, ; that is, a lobe pattern in the far-field would transfer (by

marching) to a radial shape in the duct at the source. For numerical calculations,
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the range of m would be limited to low values of m (Ref. 3) so that some
. propagating radial modes cxist in the duct. IFor large values of m, most if
not all of the radial modes no longer propagate as a wave (Ref. 16, p. 497).
. Although analytical solutions might allow predictions of the noise source for
large m, such a solution would be no practical interest since the pressure

would propagate by diffusion (like heat) and errors in measurement would be

highly magnified (Ref. 20, pp. 229-231). The Von Neumann analysis will

% again limit the grid spacing to allow only propagating modes in the duct.

b Although only propagating modes exist in a duct near its exit, higher order
far-ficld modes can be gencrated at the exit by a change of geometry (Ref. 21,
p. 122 or Ref. 22), in this case the inlet lip of a turbofan engine. Therefore,
since all modes propagate in the far-field (Ref. 13, p. 212), in applying the
marching technique to the far-field, the grid structure must account for a full
rai:ge of acoustic modes. This will be the case since the number of grid points
can increase because of the inlarged area available in the far-field. That is,
using a rectangular system for cxample, Ay is constant both inside and outside

the duct, Eq. 42; consequently, more grid points can be used in the far-field.

Because the spinning mede number m_ is not known, and the source will

s
be multimodal, measurements from a far-field horizontal array of microphones

alone can not uniquely determine the circumferential modal content of a fan.

In cffect, a horizontal traverse in the far-field is analogous to a radial traverse
internal to the duct, neither of which give any information on the circumferential
modal content of the source. This agrees with the theory of Ref. 5.

1 If the marching method'is to be used to deduce circumferential modal patterns
inside the duct without using any apriori assumptions about the modal content,
additional pressure measurements must be taken in the far-field in the colatitude
direction (Ref. 23, p. 60). A three dimensional solution of the complete set of

far-field data would lead to a source distribution p(r, ¢, 0) at the fan fuce. This

would be decomposed (Fourier scries) into the various circumferential modes.

If the phasing among the modes is a random variable such as for broadband
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noise or if a large number of mudes are involved even for a discrete tone, the

direct solution for duct modes from far-field measurements might not be practical.

For these cases an approximate approach such as used in Ref. 3 or 4 might be
used.
SUPPRESSOR ATTENUATION WITH PLANE WAVE INPUT

The noise attenuation of a suppressor is now evaluated using the marching
techniques. Consider the attenuation produced in the beginning length L* of an
infinitely long duct which has a uniform impedance along its entire length, as
shown in Fig. 12(a). To numerically predict the attenuation of the entrance
length L* in the infinite duct (Ref..6 to 10), a finite duct of length L* (Fig..12(b))
is used with an assumed exit impedance hopefully equal to the impedance which
exists at L* in the infinite duct.

An infinitely long duct with uniform impedance will not have any reflections
at any position in the duct. Consequently, the wave propagation in the entrance
region of the infinite duct can be represented with a numerical solution to a finite
duct of length L*, as in Fig. 12(b), by choosing the exit impedance at L* so
that the reflections are minimized. For the case of zero mean flow, and a plane
wave input, a p;cg exit impedance was found to give good agreement between
the analytical and numerical results for 7 between 1 and 5 and L*/H* between
0.5 and 6 (Ref. 8, Fig. 9).

Herein, the axial impedance of the medium is assumed io be constant down
the duct, consequently, the impedance of the medium at the noise source (x = 0)
is also assumed to be pgc;. This entrance impedance assumption precludes any
possibility of reflections at the duct entrance and would not be valid in cases
where strong reflections are known to exist. Using this assumption and the
marching technique, the noise attenuation at the optimum point (point of maxi-
mum attenuation in the impedance plane) is now calculated for a two-dimensional
duct with L*/H* values ranging between 0.5 and 5 and an input plane wave with
dimensionless frequencies 73 of 1, 2, and 5. The values of the optimum liner

impedance used in the numerical analysis were determined from the analytical
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The numerically calculated attenuations are compared to the corresponding
analytical results in Fig. 13. The numerical results are given by symbols while

. the analytical results are represented by the solid lines. For dimensionless

frequencies 1) equal to 1 or 2, the numerical and analytical results are generally

in poor agreement. Also, for 77 equal to 1, the analysis breaks down (calculated %
numbers go to infinity) for L*/H* equal or greater than one, while for n* equal ?;

A
to 2 the break down begins at L*/H* equal to 3. Most likely, the truncation ;_5_

error is large because therc are few points in the transverse y direction. In

wan sewn
e Ay

the case of 17 equals 1, Eq. 45 allows the use of only 4 points.

On the other hand, the analytical and numerical results are in very good

-
2
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agreement for 1 equal to 5. It is well known (Ref. 25, p. 391), that the trunca-

tion error is dominated by the largest spacing increment, in this case Ay. For L

high frequencies, sufficient transverse grid points are now available to reduce g

the truncation error in the y-direction and thereby to accurately predict the ':

i

transverse pressure profiles. Therefore, stability restrictions on Ay limit “i

the application of the marching technique to high frequency sound, 1 equal to 5 :3

,34 or greater. This limitation applies equally well to the work of the previous ﬂ;
:‘M*;‘ section (marching from the duct exit to the entrance). F‘
:éii; In the simple but practical example just considered, reflections in the duct ’;li
R, do not exist. In such a case, the acrodynamic forces producing the noise source 4;

could be calculated without reference to the acoustic field. However, a wide
class of problems exists in which the acoustic field reacts back in the source
(Ref. 26). such as when partial blockage (scattering) occurs in a duct (Ref. 16,
- p. 400) or when a duct mode produces a large back reaction force on the source

(Ref, 16, p. 501). In these more complicated situations, an iterative marching

approach might account for reflections in the system.
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CONCLUDING REMARKS
1. An initial value numerical method is developed to predict the pressure
distribution of a ducted source from the downstream pressure measurements.
The technique is useful for relatively high frequencies () = 5). For the special .
case where reflection in a duct are small; the technique can also be used to esti-

mate the attenuation of a straight soft wall duct.

2. Compared to conventional finite difference or finite element boundary
value approaches, the numerical marching technique is orders of magnitude 7
shorter in computational time and computer storage requirements. Therefore, %
this technique could be used as a companion to the houndary value techniques :
particularly at high frequencies.

3. The Von Neumann method accurately predicts the onset of instability in
the numerical calculation. The stability considerations limit the approach to
high frequency sound.

4. Because the marching technique is explicit in nature, the technique
can }'eadily be applied to three dimensional problem. Thus, the technice could

be useful in tracing.far-field pressurs patterns back to the noise source. Ex-

ample problems also indicate that the phase relationships between microphone
measurements in the far-field must be recorded if the source distribution is
to be calculated.

5. The marching technique, in effect, reduces the partial difference equation N
to an ordinary differential equation because the transverse gradient terms are -
approximated by previously known values. Thus, in principle, a nonlinear prob-
lem could be conveniently handled with Runga Kutta or other standard techniques.
In addition, the techniques may be applicable to other complications in the flow
field, such as a variable speed of sound (Ref. 27). Of course, the procedure
would have to be first applied before one could be certain of its success. In

these more complicated cases, the stability analysis could be performed by

computer trial and error to determine critical values of Ay and Ax,




23

6. The marching technique can easily be applicd directly to the individual
continuity, momentum, and cnergy equations. Thus, it is unnecessary to com-
bine these equations to obtain a wave equation, The combination was performed
herein to simplify the stability analysis. Hopefully, with the addition of flow
gradients and some nonlinear effects, the stability requirements will not be as
restrictive.

7. Finally, the marching technique can not be used directly to estimate the
attenuation of noise suppressors in situations where large reflections occur in a
duct such as would occur with a converging duct. In this case, an assumed
entrance impedance of p"(;(.‘"o‘ could be invalid. However, an iteration process
might be developed which could lead to a valid solution. This limitation does

not apply to situations where both the pressure and entrance impedance are known

from measurements.
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APPENDIX A 3
FINITE DIFFERENCE FORMULATION

The governing difference equation can be developed by an integration process
in which the Helmholtz Eq. 1 is integrated over the cell area, Eq. 12. Eq. 12 can -

be rewritten as

82 ﬂaz ’ 2 l::
2P dxdy + 2 P dxdy + (2rn)* pdxdy = 0 (A1) .
2 2 [ 3
ox ay ;
N . Cu H
Cell Cell Cell *
area area area ORIGINAL PAGE IS pr
OF POOR QUALITY :
2
The various pressures and their derivatives in Eq. Al are evaluated at the edges 4
of the cells, designated by + and - signs in the following equations. These terms ik

will be different for each cell because the boundary conditions, as well as size I
of the cell vary. |
For cell number 1 in Fig. 3, the standard approximations for the derivatives i

I
are used 1 3
\‘ ) . ‘

B PO A ] Ay «‘

/ s DAy T Py 5 2R YRy ) (A2)
2 ox i Ax
9 [ ox - .

- 1\ [ 33

ks -
P2 anl+
! 9P gxdy = 2B ! - 2 + Ax

/." JXdy ; dx (pk,J+1 Pk’J pk’ j' 1) Ay (A3)

ARV )

/ 2 2 / / 2

/ = { -~ . ‘ - A : 4
" @m)” pdxdy = @mn)” py B dxdy = @rn)” AxAy py (A4)

where

s . - . . -
.9_2‘ = pk'f'lll pkll : 22! = pkll pk-lli (AS5)
x| Ax ox' Ax
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4; — pk !'+1 pk ! . 9_2 = pkI ! - pk‘ 'l-l (A6)
X oy Ay ay| _ Ay

s I Substituting Eqs. A2 to A5 into Eq. Al gives

~ _ay? - +2 {1 +,_.Y - Gmly) AY>2“ - (A =0 (A7)
‘tj ‘AX ' pk-la.) pk:.]- ' \Ax ka, pk,.j"'l QA ) pk+1,zj

% /

%

The finite-difference approximation for cell no. 1, Eq. A7, as well as the other

cells in IFig, 3 can be written in the form of Eq. 13 in the body of this report.

The derivation of the difference equations at the upper boundary are just as H

casy provided one recognizes that
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as given by Eq. 5. Similar cxpression can be developed for the exit condition.
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For the special case of the explicit lI-grid shown in Fig. 5(b), the transverse

&
N

grid derivatives at the upper wall would be approximated by

opf - kP B M1 ®Pen i Pen o)) (A9)
R o i
Er R S B S S W (A10) 115
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The weighting factors Wk and Wk-l arc defined by Eq. 21 in the body of this

. paper.
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APPENDIX B , }"
PHYSICAL SIGNIFICANCE O VON NEUMANN METHOD o
The Von Neumann method is quite compatible with acoustic problems since ;.’
the Fourier representation of the error at each grid point can be also applied to S RE %r“*‘
an actual transverse harmonic pressure input at the boundary. Therefore, in ,;
addition to evaluating the stability of the various grid systems, let us consider E ‘
what eifects the governir.g equations and boundary conditions will have on a " 4 2
transverse harmonic input for the simple case of a hard wall duct. 1 "
The solution to the Helmholtz equation, Eq. 1, for a two-dimensional in- . ‘ w
finitely long duct with rigid walls is given for example in Ref. 16 (pp. 496 and . § ‘
@ 504). The nondimensional acoustic pressurce can be expressed (using notation g.v
- different from Ref. 16) as % *
£ — e e
A ) -im (277)2 -n’x :
ORIGINAL PAGE IS p= A, cos nmy e (Bi) s
OF POOR QUALITY el

where the rigid walls are located at y equals 0 and 1. The symbol n represents

the transverse mode number. The characteristic function cosnry satisfies the ‘\ P L
S8 B
condition that the transverse velocity at both walls will be identical to zero for "?7‘:. )
a hard wall two-dimensional duct. { ":{v' T
SR
Eq. Bl indicates that for the mode number n, if N
n<2p (B?) ] :
. .{ i
the mode (cos nry) will propagate unattenuated down the duct with a constant am- S
AL
plitude. On the other hand, if n is greater than 277 the mode will exponeatially 3 [ .

decay. It is said to be cutoff. For the special case of n equals 2ny the mode .

becomes a transverse standin @ wave in the duct; that is, no variation exists in

the x direction.

In a hard wall duct, if Eq. B2 is satisficd, che numerical marching technique

should predict that the amplitude of a transverse harmonic wave will remain

constant along the duct. This is precisely what occurs when Eq. 42 is satisfied;
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that is, © must b equal to one in the Von Neumann analysis. If ¢ were less than
one, the transverse harmonic mode would decay with distance, which would violate
the true physical situation as indicated by Eq. Bl for propating transverse pressure
modes. Thus, the numerical marching technique has the proper characteristics to
match the physical situation only if ¢ equals 1 in the Von Neumann analysis.

In the sample problems investigated in the body of this paper, plane wave
and single transverse mode inputs were considered. For a plane wave input,
Ref. 6 had found that an exit impedance of pfct is a good choice for both hard
and soft wall ducts. However, for a single harmoenic mode, the exit impedance
associated with Eq. Bl is used. Substituting Ey. Bl into Eq. 2 yield for the axial

acouslic velocity of the nth mode.

u =2mall- — Pp (B3)

= 1. & (B4)

For a single harmonic mode n, the use of Eq. Bd as the exit impedance will
allow numerical calculations in finite ducts to be compared to the analytical re-

sults in an infinite duct.
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TABLE I. - COEFFICIENTS IN EXPLICIT DIFFERENCE EQUATIONS

Cell Difference clements
— index,
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Figure 5. - Explicit difference relationships for the Heimholtz
equation.
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Figure 6, - Propagation problems for a ducted
source.
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Figure 7. - Stability evaluation in marching from
exit to entrance for hard wall duct ty = 3, L*/H" =
1, K = 34),
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Figure 9. - Attenuation of soft wall duct as a
function of axial grid spacing i « 5, L*M* =
0.5 § =10\
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Figure 10. - Effect of exit pressure phase on acoustic In- . -
tensity in a soft wall duct using explicit H marching
for plane wave input at x = 0.5,
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Figure 11. - Pressure profiles at duct entrance
as a function of the phase at exit.
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Figure 12, - Nunlerical ropresentation of the attenuation problem
for a section L~ of an infinite duct.
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Figure 13, - Effect of axial length and
frequency on attenuation at opti-
mum impedance in two-dimensional
duct for a plane wave input.
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